AI NetworkOptimizer
Self-optimizing network routing with machine learning
Smart Routing
AI analyzes traffic patterns and automatically optimizes routing decisions for maximum performance and reliability
Congestion Prediction
Machine learning models predict network congestion before it occurs and proactively reroute traffic
Performance Analytics
Deep traffic analysis provides insights into network performance, bottlenecks, and optimization opportunities
Auto-Configuration
Intelligent network configuration that adapts to changing conditions and optimizes for current workloads
Installation
Deploy AI NetworkOptimizer to start intelligent network routing optimization with machine learning.
System Requirements
- Linux kernel 4.9+ with eBPF support
- Python 3.8+ and Node.js 16+ for AI models
- Network admin privileges for routing table access
- Minimum 2GB RAM (4GB recommended for large networks)
- Access to network infrastructure and routing devices
Install via Package Manager
# Install via pip
pip install augment-network-optimizer
# Install via npm for monitoring dashboard
npm install -g @augment/network-optimizer-cli
# Install from source
git clone https://github.com/augment-ai/network-optimizer
cd network-optimizer
pip install -e .
# Install network dependencies
sudo apt-get install iproute2 iptables tcpdump
# Verify installation
net-optimizer --version
Network Infrastructure Integration
Configure integration with your network infrastructure and monitoring systems:
# Set Augment API key
export AUGMENT_API_KEY=your_api_key_here
# Configure network device access
export NETWORK_DEVICES="router1.company.com,switch1.company.com"
export SNMP_COMMUNITY=public
export SSH_KEY_PATH=/path/to/network-key
# Configure monitoring integration
export PROMETHEUS_URL=http://prometheus:9090
export INFLUXDB_URL=http://influxdb:8086
# Initialize network optimizer
net-optimizer init --discover-topology
# Verify network access
net-optimizer health-check --test-connectivity
Quick Start
Get intelligent network optimization running in minutes with automated discovery and AI-powered routing.
1. Discover Network Topology
# Auto-discover network topology
net-optimizer discover --scan-range 192.168.0.0/16 --protocols bgp,ospf
# Analyze current routing configuration
net-optimizer analyze --baseline --performance-metrics
# Generate network map
net-optimizer topology --visualize --output network-map.html
# Identify optimization opportunities
net-optimizer assess --bottlenecks --inefficient-routes
2. Enable AI Optimization
# Enable AI-powered route optimization
net-optimizer optimize --enable-ai --learning-mode supervised
# Configure traffic analysis
net-optimizer traffic --enable-monitoring --sampling-rate 1000
# Set optimization goals
net-optimizer goals --minimize-latency --maximize-throughput --load-balance
# Start predictive optimization
net-optimizer predict --enable-congestion-prediction --forecast-window 30m
3. Monitor and Tune
# Start real-time monitoring
net-optimizer monitor --real-time --dashboard
# View optimization results
net-optimizer status --show-improvements --compare-baseline
# Generate performance report
net-optimizer report --type performance --output optimization-report.pdf
# Fine-tune AI models
net-optimizer tune --retrain-models --performance-feedback
Configuration
Configure AI NetworkOptimizer to align with your network architecture and optimization objectives.
Basic Configuration
version: "1.0"
organization: "your-company"
environment: "production"
network_topology:
discovery:
auto_discover: true
scan_interval: "1h"
protocols: ["bgp", "ospf", "isis"]
devices:
- name: "core-router-1"
type: "router"
management_ip: "10.0.1.1"
protocol: "ssh"
credentials: "{SSH_KEY_PATH}"
- name: "core-switch-1"
type: "switch"
management_ip: "10.0.1.2"
protocol: "snmp"
community: "{SNMP_COMMUNITY}"
ai_optimization:
machine_learning:
enabled: true
models: ["traffic_prediction", "congestion_avoidance", "route_optimization"]
training_data_retention: "30d"
retrain_interval: "24h"
optimization_goals:
primary: "minimize_latency"
secondary: ["maximize_throughput", "load_balance", "minimize_cost"]
weights:
latency: 0.4
throughput: 0.3
reliability: 0.2
cost: 0.1
traffic_analysis:
monitoring:
enabled: true
sampling_rate: 1000
flow_timeout: "60s"
analysis_window: "5m"
collection_methods:
- "netflow"
- "sflow"
- "ebpf"
metrics:
- "bandwidth_utilization"
- "packet_loss"
- "latency"
- "jitter"
routing_optimization:
protocols:
bgp:
enabled: true
communities: ["65001:100", "65001:200"]
route_maps: ["OPTIMIZE_IN", "OPTIMIZE_OUT"]
ospf:
enabled: true
areas: ["0.0.0.0", "0.0.0.1"]
cost_optimization: true
policies:
load_balancing:
enabled: true
algorithm: "weighted_ecmp"
max_paths: 4
failover:
enabled: true
detection_time: "3s"
recovery_time: "10s"
prediction_models:
congestion_prediction:
enabled: true
prediction_window: "30m"
confidence_threshold: 0.8
traffic_forecasting:
enabled: true
forecast_horizon: "2h"
seasonal_patterns: true
failure_prediction:
enabled: true
predict_link_failures: true
predict_device_failures: true
automation:
auto_optimization:
enabled: true
safe_mode: true
rollback_time: "5m"
notifications:
channels: ["slack", "email", "webhook"]
events: ["optimization_applied", "congestion_predicted", "failure_detected"]
monitoring:
dashboards:
enabled: true
refresh_interval: "30s"
metrics_retention: "90d"
alerting:
enabled: true
thresholds:
latency_increase: 20
throughput_decrease: 15
packet_loss: 1
Traffic Analysis
AI NetworkOptimizer provides comprehensive traffic analysis using multiple collection methods and machine learning.
Flow Analysis
- • NetFlow/sFlow collection
- • Real-time flow analysis
- • Application-aware routing
- • QoS optimization
Performance Metrics
- • Latency measurement
- • Bandwidth utilization
- • Packet loss detection
- • Jitter analysis
Pattern Recognition
- • Traffic pattern learning
- • Anomaly detection
- • Seasonal pattern analysis
- • Predictive modeling
Optimization Insights
- • Route efficiency analysis
- • Bottleneck identification
- • Capacity planning
- • Performance optimization
Environment Variables
Configure AI NetworkOptimizer behavior using environment variables for different deployment scenarios.
Variable | Description | Default |
---|---|---|
AUGMENT_API_KEY | Your Augment API key | Required |
NET_OPTIMIZER_CONFIG | Path to configuration file | .net-optimizer.yaml |
NETWORK_DEVICES | Comma-separated list of network devices | auto-discover |
NET_OPTIMIZER_LOG_LEVEL | Logging level (debug/info/warn/error) | info |
Basic Usage
Learn the fundamental network optimization patterns and intelligent routing workflows.
Network Commands
# Analyze network performance and identify optimization opportunities
net-optimizer analyze --full-topology --performance-baseline
# Enable AI-powered route optimization
net-optimizer optimize --enable-ai --learning-mode --safe-rollback
# Monitor network traffic and predict congestion
net-optimizer monitor --traffic-analysis --congestion-prediction
# Generate network optimization report
net-optimizer report --performance-improvements --recommendations
CLI Commands Reference
Complete reference for all network optimization and intelligent routing commands.
optimize
Enable AI-powered network route optimization with machine learning
net-optimizer optimize [options]
Options:
--enable-ai Enable AI-powered optimization
--learning-mode <mode> Learning mode (supervised|unsupervised|reinforcement)
--goals <goals> Optimization goals (latency|throughput|reliability|cost)
--protocols <protocols> Routing protocols to optimize (bgp|ospf|isis)
--safe-rollback Enable automatic rollback on performance degradation
--dry-run Preview optimizations without applying
--continuous Enable continuous optimization
--constraints <file> Load optimization constraints from file
traffic
Analyze network traffic patterns and predict congestion
net-optimizer traffic [options]
Options:
--enable-monitoring Enable real-time traffic monitoring
--sampling-rate <rate> Traffic sampling rate (packets per second)
--analysis-window <time> Analysis time window (5m|15m|1h)
--flow-export <format> Export flow data (netflow|sflow|json)
--anomaly-detection Enable traffic anomaly detection
--baseline <duration> Establish traffic baseline over duration
--predict-congestion Enable congestion prediction
--export-data <file> Export traffic analysis data
Best Practices
Network optimization best practices to maximize performance while maintaining stability.
AI-Powered Network Optimization Strategy
- Start with comprehensive network discovery and baseline analysis
- Enable safe mode for initial AI optimizations to prevent disruptions
- Use gradual learning to train AI models on your specific network patterns
- Monitor optimization impact and adjust goals based on performance
- Implement automated rollback mechanisms for failed optimizations
- Regularly retrain models with fresh traffic data and patterns
Route Optimization
Advanced route optimization using machine learning to automatically improve network performance.
Optimization Algorithms
Shortest Path
AI-enhanced shortest path algorithms with real-time cost updates
Load Balancing
Intelligent traffic distribution across multiple paths
Congestion Avoidance
Predictive routing to avoid congested network segments
Route Configuration
# Configure intelligent route optimization
net-optimizer routes --optimize-algorithm hybrid --consider-congestion
# Set up multi-path routing with AI load balancing
net-optimizer multipath --enable-ecmp --ai-load-balance --max-paths 4
# Configure traffic engineering with ML predictions
net-optimizer traffic-engineering --enable-rsvp-te --ai-bandwidth-allocation
# Optimize BGP route selection with machine learning
net-optimizer bgp --optimize-selection --ai-path-attributes --communities
Performance Tuning
Fine-tune network performance using AI insights and automated optimization techniques.
Performance Optimization
# Tune network performance parameters with AI optimization
net-optimizer tune --buffer-sizes --congestion-windows --qos-policies
# Optimize bandwidth allocation based on traffic patterns
net-optimizer bandwidth --ai-allocation --dynamic-adjustment --priority-classes
# Configure adaptive QoS with machine learning
net-optimizer qos --adaptive-policies --ai-classification --auto-marking
# Optimize network protocols for performance
net-optimizer protocols --tcp-optimization --udp-tuning --routing-convergence
API Integration
Integrate AI NetworkOptimizer into your network management and orchestration systems.
REST API
# Trigger network optimization via API
curl -X POST https://api.augment.cfd/v1/network/optimize \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"network_id": "prod-network-01",
"optimization_goals": ["minimize_latency", "maximize_throughput"],
"enable_ai": true,
"safe_mode": true
}'
Python SDK
from augment_network_optimizer import NetworkOptimizer
# Initialize network optimizer
optimizer = NetworkOptimizer(api_key=os.environ['AUGMENT_API_KEY'])
# Discover network topology
topology = await optimizer.discover_topology(
scan_range='10.0.0.0/8',
protocols=['bgp', 'ospf'],
include_metrics=True
)
# Enable AI optimization
optimization = await optimizer.enable_ai_optimization(
goals=['minimize_latency', 'load_balance'],
learning_mode='supervised',
safe_mode=True
)
print(f"Optimization enabled for {len(topology.devices)} devices")
# Monitor traffic and get predictions
traffic_analysis = await optimizer.analyze_traffic(
duration='1h',
enable_prediction=True,
congestion_threshold=0.8
)
# Get optimization recommendations
recommendations = await optimizer.get_recommendations(
network_id='prod-network-01',
priority='high',
include_impact_analysis=True
)
API Reference
Complete API documentation for integrating network optimization into your applications.
Network Optimization Endpoint
POST /v1/network/optimize
Enable AI-powered network optimization with intelligent routing.
Request Body:
{
"network_config": {
"network_id": "prod-network-01",
"topology_discovery": {
"auto_discover": true,
"scan_ranges": ["10.0.0.0/8", "192.168.0.0/16"],
"protocols": ["bgp", "ospf", "isis"]
},
"devices": [
{
"hostname": "core-router-1",
"management_ip": "10.0.1.1",
"device_type": "router",
"vendor": "cisco"
}
]
},
"optimization_settings": {
"ai_enabled": true,
"learning_mode": "supervised",
"optimization_goals": [
{
"goal": "minimize_latency",
"weight": 0.4
},
{
"goal": "maximize_throughput",
"weight": 0.3
},
{
"goal": "load_balance",
"weight": 0.3
}
],
"constraints": {
"max_latency_increase": "10%",
"min_reliability": 99.9,
"cost_budget": 10000
}
},
"traffic_analysis": {
"enable_monitoring": true,
"sampling_rate": 1000,
"analysis_window": "5m",
"prediction_enabled": true,
"congestion_threshold": 0.8
},
"safety_settings": {
"safe_mode": true,
"rollback_timeout": "5m",
"validation_tests": true,
"approval_required": false
}
}
Response:
{
"optimization_id": "opt-12345",
"status": "completed",
"network_id": "prod-network-01",
"summary": {
"devices_optimized": 12,
"routes_optimized": 156,
"optimization_time": "2m 34s",
"ai_models_applied": 3
},
"performance_improvements": {
"latency_reduction": {
"average": "23%",
"max": "45%",
"baseline_ms": 28.5,
"optimized_ms": 21.9
},
"throughput_increase": {
"average": "18%",
"max": "32%",
"baseline_mbps": 850.2,
"optimized_mbps": 1003.7
},
"load_distribution": {
"variance_reduction": "34%",
"utilization_balance": 0.89
}
},
"route_changes": [
{
"destination": "192.168.1.0/24",
"old_path": ["10.0.1.1", "10.0.2.1", "10.0.3.1"],
"new_path": ["10.0.1.1", "10.0.4.1", "10.0.3.1"],
"improvement": {
"latency_reduction": "15ms",
"reason": "congestion_avoidance"
}
}
],
"ai_insights": [
{
"type": "traffic_pattern",
"insight": "High bandwidth utilization detected on link 10.0.1.1->10.0.2.1 during business hours",
"recommendation": "Consider implementing time-based load balancing",
"confidence": 0.92
}
],
"predictions": {
"congestion_forecast": [
{
"link": "10.0.1.1->10.0.2.1",
"predicted_congestion": "14:30-16:00",
"probability": 0.87,
"mitigation": "traffic_rerouting_enabled"
}
]
}
}
Troubleshooting
Common issues and solutions when implementing AI-powered network optimization.
Common Issues
Optimization Causing Performance Degradation
AI optimizations resulting in worse network performance
- Enable safe mode with automatic rollback on performance degradation
- Increase AI model training data collection period
- Adjust optimization goals and constraint weights
- Use gradual optimization approach instead of aggressive changes
Inaccurate Traffic Predictions
Machine learning models not accurately predicting traffic patterns
- Increase traffic sampling rate for better data quality
- Extend baseline period to capture seasonal patterns
- Include more diverse traffic scenarios in training data
- Tune prediction confidence thresholds based on accuracy metrics
Network Device Integration Issues
Problems connecting to or configuring network devices
- Verify device credentials and network connectivity
- Check device API versions and compatibility
- Ensure required privileges for configuration changes
- Test device integration with health-check command
Network Optimization Documentation Complete!
You now have comprehensive knowledge to implement AI NetworkOptimizer in your network infrastructure. From intelligent routing to predictive traffic management, you're equipped to enhance network performance with AI-powered optimization.
Ready to optimize your network with AI? Start your free network analysis today and discover how machine learning can transform your routing performance.