AI MonitorIQ
Intelligent monitoring setup with predictive alerts
Intelligent Setup
AI automatically configures optimal monitoring for your infrastructure based on best practices and usage patterns
Predictive Alerts
Advanced machine learning predicts issues before they occur and creates proactive alerts
Smart Insights
AI analyzes system performance trends and provides intelligent insights into health and efficiency
Auto-Optimization
Continuously optimizes monitoring configurations based on system behavior and alert effectiveness
Installation
Deploy AI MonitorIQ to automatically set up intelligent monitoring and predictive alerting for your infrastructure.
System Requirements
- Python 3.9 or higher
- Prometheus 2.30+ or compatible metrics system
- Grafana 8.0+ (for dashboard visualization)
- Minimum 4GB RAM (8GB recommended for large environments)
- Network access to monitoring targets and notification systems
Install via Package Manager
# Install via pip
pip install augment-monitor-iq
# Install via Docker
docker pull augment/monitor-iq:latest
# Install from source
git clone https://github.com/augment-ai/monitor-iq
cd monitor-iq
pip install -e .
# Install monitoring dependencies
pip install prometheus-client grafana-api pyyaml
# Verify installation
monitor-iq --version
Monitoring Stack Integration
Configure integration with your monitoring infrastructure:
# Set Augment API key
export AUGMENT_API_KEY=your_api_key_here
# Configure Prometheus integration
export PROMETHEUS_URL=http://prometheus:9090
export PROMETHEUS_USER=admin
export PROMETHEUS_PASS=your_password
# Configure Grafana integration
export GRAFANA_URL=http://grafana:3000
export GRAFANA_TOKEN=your_grafana_token
# Configure notification channels
export SLACK_WEBHOOK=https://hooks.slack.com/...
export PAGERDUTY_TOKEN=your_pagerduty_token
# Initialize monitor IQ
monitor-iq init --discover-infrastructure
# Verify integrations
monitor-iq health-check
Quick Start
Get intelligent monitoring and predictive alerts running in minutes with automated configuration.
1. Discover Infrastructure
# Auto-discover infrastructure components
monitor-iq discover --providers aws,azure,kubernetes
monitor-iq discover --services web,database,cache,queue
# Analyze current monitoring coverage
monitor-iq coverage --analyze-gaps --recommend-additions
# Generate monitoring plan
monitor-iq plan --priority critical,high --include-predictions
2. Deploy Monitoring
# Deploy intelligent monitoring configuration
monitor-iq deploy --auto-configure --enable-predictions
# Set up predictive alerts
monitor-iq alerts create --type predictive --confidence 0.8
monitor-iq alerts create --type anomaly --sensitivity medium
# Configure notification channels
monitor-iq notifications add slack --channel "#alerts" --urgency high
monitor-iq notifications add email --recipients "ops@company.com"
3. Monitor and Optimize
# Start intelligent monitoring
monitor-iq start --daemon --predictive-mode
# Monitor system health in real-time
monitor-iq status --live --show-predictions
# Generate monitoring report
monitor-iq report --type health-insights --output monitoring-report.html
# Optimize monitoring configuration
monitor-iq optimize --reduce-noise --improve-accuracy
Configuration
Configure AI MonitorIQ to align with your infrastructure and monitoring requirements.
Basic Configuration
version: "1.0"
organization: "your-company"
environment: "production"
infrastructure:
discovery:
providers: ["aws", "azure", "kubernetes"]
auto_discover: true
scan_interval: "1h"
services:
- name: "web-tier"
type: "web"
endpoints: ["http://app.company.com"]
- name: "database"
type: "database"
hosts: ["db1.company.com", "db2.company.com"]
- name: "cache"
type: "redis"
cluster: "redis.company.com:6379"
monitoring_stack:
prometheus:
url: "http://prometheus:9090"
retention: "30d"
scrape_interval: "30s"
grafana:
url: "http://grafana:3000"
api_token: "{GRAFANA_TOKEN}"
create_dashboards: true
alertmanager:
url: "http://alertmanager:9093"
config_path: "/etc/alertmanager/"
ai_configuration:
predictive_alerts:
enabled: true
prediction_window: "2h"
confidence_threshold: 0.8
models: ["anomaly", "trend", "seasonal"]
smart_thresholds:
enabled: true
baseline_period: "7d"
adaptation_rate: "daily"
noise_reduction:
enabled: true
correlation_window: "5m"
suppress_duplicates: true
alert_rules:
system_health:
cpu_usage:
warning: 70
critical: 85
prediction: true
memory_usage:
warning: 75
critical: 90
prediction: true
disk_usage:
warning: 80
critical: 95
prediction: true
application_health:
response_time:
warning: "500ms"
critical: "2s"
prediction: true
error_rate:
warning: 5
critical: 10
prediction: true
notifications:
channels:
- name: "slack-critical"
type: "slack"
webhook: "{SLACK_WEBHOOK}"
urgency: ["critical"]
- name: "email-team"
type: "email"
recipients: ["ops@company.com"]
urgency: ["warning", "critical"]
- name: "pagerduty"
type: "pagerduty"
service_key: "{PAGERDUTY_KEY}"
urgency: ["critical"]
automation:
auto_remediation:
enabled: true
safe_actions_only: true
approval_required: ["restart_service", "scale_resources"]
monitoring_optimization:
enabled: true
optimization_interval: "24h"
learn_from_feedback: true
Predictive Alerts
AI MonitorIQ uses advanced machine learning to predict issues before they impact your systems.
Anomaly Prediction
- • Unusual pattern detection
- • Performance degradation prediction
- • Resource exhaustion forecasting
- • Service disruption early warning
Trend Analysis
- • Growth trend monitoring
- • Capacity planning insights
- • Performance trend analysis
- • Usage pattern evolution
Seasonal Patterns
- • Daily usage cycle analysis
- • Weekly pattern recognition
- • Monthly seasonal adjustments
- • Holiday traffic predictions
Correlation Analysis
- • Cross-service impact analysis
- • Dependency chain monitoring
- • Cascading failure prediction
- • Root cause correlation
Environment Variables
Configure AI MonitorIQ behavior using environment variables for different deployment scenarios.
Variable | Description | Default |
---|---|---|
AUGMENT_API_KEY | Your Augment API key | Required |
MONITOR_IQ_CONFIG | Path to configuration file | .monitor-iq.yaml |
PROMETHEUS_URL | Prometheus server URL | http://localhost:9090 |
MONITOR_IQ_LOG_LEVEL | Logging level (debug/info/warn/error) | info |
Basic Usage
Learn the fundamental monitoring intelligence patterns and observability workflows.
Monitoring Commands
# Deploy intelligent monitoring for discovered services
monitor-iq deploy --services all --enable-predictions
# Create smart alerts with AI-optimized thresholds
monitor-iq alerts create --smart-thresholds --learn-from-history
# Monitor system health with predictive insights
monitor-iq monitor --predictive --real-time --dashboard
# Optimize existing monitoring configuration
monitor-iq optimize --reduce-alerts --improve-coverage
CLI Commands Reference
Complete reference for all monitoring intelligence and predictive alerting commands.
deploy
Deploy intelligent monitoring configuration with AI-optimized settings
monitor-iq deploy [options]
Options:
--services <services> Services to monitor (all|web|database|cache)
--auto-configure Automatically configure optimal monitoring
--enable-predictions Enable predictive alerting
--monitoring-stack <stack> Target stack (prometheus|datadog|newrelic)
--template <template> Use monitoring template
--dry-run Preview configuration without deploying
--update-existing Update existing monitoring configuration
--backup-config Backup current configuration before changes
predict
Configure and manage predictive monitoring capabilities
monitor-iq predict [options]
Options:
--enable <models> Enable prediction models (anomaly|trend|seasonal)
--confidence <level> Minimum prediction confidence threshold
--window <duration> Prediction time window (1h|2h|4h|8h)
--train Train prediction models on historical data
--validate Validate prediction model accuracy
--tune Tune model parameters for better accuracy
--forecast <metric> Generate forecast for specific metric
Best Practices
Monitoring intelligence best practices to maximize observability while minimizing alert fatigue.
Intelligent Monitoring Strategy
- Start with auto-discovery to understand infrastructure scope
- Implement predictive alerts gradually to build confidence
- Use smart thresholds to reduce false positive alerts
- Monitor prediction accuracy and tune models regularly
- Integrate with existing incident response workflows
- Continuously optimize monitoring based on feedback
Monitoring Templates
Pre-built monitoring templates for common infrastructure patterns and application architectures.
Available Templates
Web Application Stack
Complete monitoring for web application infrastructure
monitor-iq deploy --template web-stack \
--components "load-balancer,web-servers,database" \
--auto-scaling-groups "web-asg"
Microservices Platform
Service mesh and container monitoring
monitor-iq deploy --template microservices \
--kubernetes-cluster "prod-cluster" \
--service-mesh "istio"
Data Pipeline
ETL and data processing pipeline monitoring
monitor-iq deploy --template data-pipeline \
--components "kafka,spark,airflow" \
--data-stores "s3,redshift"
Serverless Functions
Lambda and serverless function monitoring
monitor-iq deploy --template serverless \
--functions "api-functions,data-processors" \
--api-gateways "api-v1,api-v2"
Health Insights
AI-powered health insights provide deep analysis of system performance and reliability trends.
Insight Categories
Performance Insights
Analysis of performance trends and optimization opportunities
Reliability Insights
System reliability metrics and failure pattern analysis
Efficiency Insights
Resource utilization and cost optimization recommendations
Generate Health Insights
# Generate comprehensive health report
monitor-iq insights --type health --timeframe 30d --include-predictions
# Analyze specific service health
monitor-iq insights --service web-tier --focus performance,reliability
# Generate capacity planning insights
monitor-iq insights --type capacity --forecast 90d --growth-analysis
# Create executive health summary
monitor-iq insights --executive-summary --sla-analysis --cost-impact
API Integration
Integrate AI MonitorIQ into your observability stack and incident management workflows.
REST API
# Deploy monitoring configuration via API
curl -X POST https://api.augment.cfd/v1/monitoring/deploy \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"services": ["web", "database"],
"enable_predictions": true,
"auto_configure": true,
"notification_channels": ["slack", "email"]
}'
Python SDK
from augment_monitor_iq import MonitorIQ
# Initialize monitor IQ
monitor = MonitorIQ(api_key=os.environ['AUGMENT_API_KEY'])
# Deploy intelligent monitoring
deployment = await monitor.deploy_monitoring(
services=['web', 'database', 'cache'],
enable_predictions=True,
auto_configure=True
)
# Get health insights
insights = await monitor.get_health_insights(
timeframe='7d',
include_predictions=True,
focus=['performance', 'reliability']
)
print(f"Generated {len(insights)} health insights")
# Configure predictive alerts
alert_config = await monitor.configure_predictive_alerts(
models=['anomaly', 'trend'],
confidence_threshold=0.8,
prediction_window='2h'
)
# Get monitoring status
status = await monitor.get_monitoring_status(
include_predictions=True,
include_health_score=True
)
API Reference
Complete API documentation for integrating monitoring intelligence into your applications.
Monitoring Deployment Endpoint
POST /v1/monitoring/deploy
Deploy intelligent monitoring configuration with AI-optimized settings.
Request Body:
{
"infrastructure": {
"providers": ["aws", "kubernetes"],
"services": ["web", "database", "cache"],
"auto_discover": true
},
"monitoring_config": {
"enable_predictions": true,
"prediction_models": ["anomaly", "trend", "seasonal"],
"confidence_threshold": 0.8,
"smart_thresholds": true
},
"alert_configuration": {
"notification_channels": [
{
"type": "slack",
"webhook": "https://hooks.slack.com/...",
"urgency": ["critical", "warning"]
},
{
"type": "email",
"recipients": ["ops@company.com"],
"urgency": ["critical"]
}
],
"escalation_policy": {
"enabled": true,
"escalation_time": "15m"
}
},
"optimization_goals": {
"reduce_alert_noise": true,
"improve_coverage": true,
"enable_auto_remediation": false
}
}
Response:
{
"deployment_id": "mon-deploy-123",
"status": "completed",
"summary": {
"services_monitored": 8,
"alerts_configured": 34,
"predictive_alerts": 12,
"dashboards_created": 5
},
"monitoring_configuration": {
"prometheus_rules": 28,
"grafana_dashboards": [
"infrastructure-overview",
"application-performance",
"predictive-insights"
],
"alert_rules": [
{
"name": "High CPU Usage Prediction",
"type": "predictive",
"service": "web-tier",
"prediction_window": "2h",
"confidence": 0.85
}
]
},
"health_baseline": {
"overall_score": 87,
"performance_score": 92,
"reliability_score": 84,
"efficiency_score": 85
},
"insights": [
{
"type": "optimization",
"title": "Memory utilization trending upward",
"service": "web-tier",
"prediction": "Memory exhaustion predicted in 6 hours",
"recommendation": "Consider scaling up memory allocation",
"confidence": 0.89
}
]
}
Troubleshooting
Common issues and solutions when implementing intelligent monitoring and predictive alerting.
Common Issues
High False Positive Rate
Predictive alerts generating too many false positives
- Increase confidence threshold for predictive alerts
- Extend baseline learning period for better accuracy
- Enable smart thresholds to adapt to normal variations
- Fine-tune prediction models with recent data
Missing Monitoring Coverage
Auto-discovery not finding all infrastructure components
- Verify cloud provider credentials and permissions
- Check network connectivity to target systems
- Manually add missing services to configuration
- Update discovery patterns to include new resources
Performance Impact
Monitoring intelligence causing performance overhead
- Adjust monitoring frequency for less critical services
- Use sampling for high-volume metrics collection
- Optimize prediction model execution schedules
- Scale monitoring infrastructure resources
Monitoring Intelligence Documentation Complete!
You now have comprehensive knowledge to implement AI MonitorIQ in your observability stack. From intelligent monitoring setup to predictive alerting, you're equipped to enhance system reliability with AI-powered monitoring intelligence.
Ready to revolutionize your monitoring? Start your free intelligence assessment today and discover how AI can predict issues before they impact your users.