AI LogAnalyzer
Intelligent log analysis with anomaly detection
AI-Powered Analysis
Advanced machine learning algorithms automatically detect anomalies and patterns in log data
Real-time Processing
Process millions of log entries in real-time with intelligent filtering and correlation
Behavioral Learning
Learn normal system behavior and flag unusual activities with high accuracy
Smart Alerting
Intelligent alerting system that reduces noise and focuses on actionable insights
Installation
Deploy AI LogAnalyzer to start intelligent log monitoring and anomaly detection across your infrastructure.
System Requirements
- Python 3.9 or higher
- Elasticsearch 7.0+ (for log storage and indexing)
- Redis 6.0+ (for real-time processing)
- Minimum 16GB RAM (32GB recommended for high volume)
- Network access to log sources and notification systems
Install via Package Manager
# Install via pip
pip install augment-log-analyzer
# Install via Docker Compose
curl -O https://raw.githubusercontent.com/augment-ai/log-analyzer/main/docker-compose.yml
docker-compose up -d
# Install from source
git clone https://github.com/augment-ai/log-analyzer
cd log-analyzer
pip install -e .
# Install dependencies
pip install elasticsearch redis numpy pandas scikit-learn
# Verify installation
log-analyzer --version
Service Configuration
Configure required services and API access:
# Set Augment API key
export AUGMENT_API_KEY=your_api_key_here
# Configure Elasticsearch connection
export ELASTICSEARCH_URL=http://localhost:9200
export ELASTICSEARCH_USERNAME=elastic
export ELASTICSEARCH_PASSWORD=your_password
# Configure Redis connection
export REDIS_URL=redis://localhost:6379
# Initialize log analyzer
log-analyzer init --create-indices
# Verify services
log-analyzer health-check
Quick Start
Start analyzing logs and detecting anomalies in minutes with intelligent pattern recognition.
1. Configure Log Sources
# Add application log source
log-analyzer add-source --type application \
--path "/var/log/app/*.log" \
--format json \
--name "web-application"
# Add system log source
log-analyzer add-source --type syslog \
--host syslog-server \
--port 514 \
--name "system-logs"
# Add cloud service logs
log-analyzer add-source --type aws-cloudwatch \
--log-group "/aws/lambda/my-function" \
--region us-east-1 \
--name "lambda-logs"
# This creates .log-analyzer.yaml config file
2. Start Log Processing
# Start real-time log analysis
log-analyzer start --daemon
# Process historical logs
log-analyzer process --historical --days 7
# Train anomaly detection models
log-analyzer train --source web-application --baseline-days 30
# Monitor processing status
log-analyzer status --verbose
3. Generate Analysis Reports
# Generate anomaly report
log-analyzer report --type anomalies --output anomalies.html
# Export insights as JSON
log-analyzer export --format json --output insights.json
# Create dashboard summary
log-analyzer dashboard --timeframe 24h --output dashboard.html
# Generate security analysis
log-analyzer security-report --output security-analysis.pdf
Configuration
Configure AI LogAnalyzer to match your logging infrastructure and analysis requirements.
Basic Configuration
version: "1.0"
organization: "your-company"
environment: "production"
data_sources:
- name: "web-application"
type: "file"
path: "/var/log/app/*.log"
format: "json"
fields:
timestamp: "timestamp"
level: "level"
message: "message"
user_id: "user_id"
- name: "system-logs"
type: "syslog"
host: "syslog-server"
port: 514
facility: ["kern", "mail", "auth"]
elasticsearch:
url: "http://localhost:9200"
index_prefix: "logs-"
retention_days: 90
shards: 3
replicas: 1
redis:
url: "redis://localhost:6379"
db: 0
key_prefix: "log-analyzer:"
anomaly_detection:
algorithms: ["isolation_forest", "one_class_svm", "lstm"]
sensitivity: "medium"
baseline_days: 30
update_frequency: "daily"
confidence_threshold: 0.8
alerts:
enabled: true
channels:
- type: "slack"
webhook: "{SLACK_WEBHOOK}"
channel: "#alerts"
- type: "email"
smtp_server: "smtp.company.com"
recipients: ["ops@company.com"]
processing:
batch_size: 1000
workers: 4
buffer_size: 10000
real_time: true
Anomaly Detection
AI LogAnalyzer uses multiple machine learning algorithms to detect anomalies and unusual patterns in log data.
Statistical Anomalies
- • Unusual volume spikes or drops
- • Response time outliers
- • Error rate deviations
- • Traffic pattern changes
Behavioral Anomalies
- • Unusual user access patterns
- • Abnormal system behavior
- • Unexpected application flows
- • Security-related activities
Temporal Anomalies
- • Off-hours activity detection
- • Seasonal pattern deviations
- • Burst activity detection
- • Time-series outliers
Content Anomalies
- • New error message patterns
- • Unusual log message content
- • Malformed log entries
- • Suspicious text patterns
Anomaly Configuration
# Configure anomaly detection models
log-analyzer anomaly config --algorithm isolation_forest \
--sensitivity high \
--features timestamp,level,response_time
# Set custom thresholds
log-analyzer anomaly threshold --metric error_rate --threshold 0.05
log-analyzer anomaly threshold --metric response_time --threshold 2000
# Train models on historical data
log-analyzer anomaly train --source web-application \
--start-date 2025-08-01 \
--end-date 2025-09-01
# Enable real-time anomaly detection
log-analyzer anomaly enable --real-time --alert-on-detection
Environment Variables
Configure AI LogAnalyzer behavior using environment variables for different deployment scenarios.
Variable | Description | Default |
---|---|---|
AUGMENT_API_KEY | Your Augment API key | Required |
LOG_ANALYZER_CONFIG | Path to configuration file | .log-analyzer.yaml |
ELASTICSEARCH_URL | Elasticsearch connection URL | http://localhost:9200 |
REDIS_URL | Redis connection URL | redis://localhost:6379 |
LOG_ANALYZER_WORKERS | Number of processing workers | 4 |
Basic Usage
Learn the fundamental log analysis patterns and anomaly detection workflows.
Analysis Commands
# Search logs with intelligent filtering
log-analyzer search --query "error OR exception" --timeframe 1h
# Analyze log patterns
log-analyzer patterns --source web-application --timeframe 24h
# Detect anomalies in real-time
log-analyzer detect --live --sensitivity medium
# Generate insights from log data
log-analyzer insights --source system-logs --focus security
CLI Commands Reference
Complete reference for all log analysis and anomaly detection commands.
analyze
Run comprehensive log analysis with AI-powered insights
log-analyzer analyze [options]
Options:
--source <source> Log source to analyze
--timeframe <period> Analysis timeframe (1h|24h|7d|30d)
--start-time <datetime> Start time for analysis
--end-time <datetime> End time for analysis
--focus <area> Focus area (security|performance|errors|all)
--anomalies Include anomaly detection
--patterns Extract log patterns
--output <file> Output file path
--format <format> Output format (json|html|csv)
--real-time Enable real-time analysis
--alert-threshold <num> Alert threshold for anomalies
search
Intelligent log search with natural language queries
log-analyzer search [options]
Options:
--query <query> Search query (supports natural language)
--source <source> Specific log source to search
--timeframe <period> Time period for search
--fields <fields> Fields to include in results
--limit <number> Maximum number of results
--sort <field> Sort by field (timestamp|relevance)
--export <file> Export results to file
--correlate Enable log correlation
Best Practices
Log analysis best practices to maximize detection accuracy and operational insights.
Log Analysis Strategy
- Standardize log formats across applications and systems
- Include sufficient context in log messages for analysis
- Train anomaly detection models on representative baseline data
- Set appropriate sensitivity levels to balance detection and noise
- Regularly update models with new normal behavior patterns
- Implement proper log retention and archival policies
Log Sources
AI LogAnalyzer supports a wide variety of log sources and formats for comprehensive analysis.
Supported Log Sources
Custom Log Source Configuration
# Add custom application log source
log-analyzer add-source --type custom \
--name "my-app" \
--path "/var/log/myapp/*.log" \
--format "custom" \
--pattern "%{TIMESTAMP:timestamp} %{LOGLEVEL:level} %{GREEDYDATA:message}"
# Add database log source
log-analyzer add-source --type database \
--name "postgres-logs" \
--host "db-server" \
--port 5432 \
--query "SELECT * FROM pg_log"
# Add cloud service logs
log-analyzer add-source --type azure-logs \
--name "app-service" \
--subscription-id "sub-123" \
--resource-group "production"
Alerting
Intelligent alerting system that reduces noise and provides actionable notifications.
Alert Configuration
# Configure Slack alerts
log-analyzer alert config --channel slack \
--webhook "https://hooks.slack.com/..." \
--channel "#alerts" \
--severity critical,high
# Configure email alerts
log-analyzer alert config --channel email \
--smtp-server "smtp.company.com" \
--recipients "ops@company.com,security@company.com" \
--template "security-alert"
# Configure PagerDuty integration
log-analyzer alert config --channel pagerduty \
--service-key "your-service-key" \
--escalation-policy "critical-issues"
# Set alert thresholds
log-analyzer alert threshold --metric anomaly_score --threshold 0.8
log-analyzer alert threshold --metric error_rate --threshold 0.05
API Integration
Integrate AI LogAnalyzer into your monitoring and observability stack.
REST API
# Submit logs for analysis via API
curl -X POST https://api.augment.cfd/v1/logs/analyze \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"source": "web-application",
"logs": [
{
"timestamp": "2025-09-18T10:30:00Z",
"level": "ERROR",
"message": "Database connection failed",
"user_id": "user123"
}
],
"detect_anomalies": true
}'
Python SDK
from augment_log_analyzer import LogAnalyzer
# Initialize log analyzer
analyzer = LogAnalyzer(api_key=os.environ['AUGMENT_API_KEY'])
# Submit logs for analysis
analysis_result = await analyzer.analyze_logs(
source='web-application',
logs=log_entries,
detect_anomalies=True,
timeframe='1h'
)
# Get detected anomalies
anomalies = analysis_result.get_anomalies()
print(f"Detected {len(anomalies)} anomalies")
# Set up real-time monitoring
async def on_anomaly(anomaly):
print(f"Anomaly detected: {anomaly.description}")
await send_alert(anomaly)
monitor = analyzer.start_monitoring(
source='web-application',
on_anomaly=on_anomaly,
sensitivity='medium'
)
# Search logs with natural language
search_results = await analyzer.search(
query="database errors in the last hour",
source='web-application'
)
API Reference
Complete API documentation for integrating log analysis into your applications.
Log Analysis Endpoint
POST /v1/logs/analyze
Analyze log entries and detect anomalies using AI.
Request Body:
{
"source": "web-application",
"logs": [
{
"timestamp": "2025-09-18T10:30:00Z",
"level": "ERROR",
"message": "Database connection failed",
"user_id": "user123",
"request_id": "req-456",
"response_time": 5000
}
],
"options": {
"detect_anomalies": true,
"extract_patterns": true,
"correlate_events": true,
"generate_insights": true
},
"analysis_type": "real_time|batch|historical",
"timeframe": "1h|24h|7d",
"sensitivity": "low|medium|high"
}
Response:
{
"analysis_id": "analysis-789",
"status": "completed",
"summary": {
"total_logs": 1000,
"anomalies_detected": 5,
"patterns_found": 12,
"severity_distribution": {
"critical": 1,
"high": 2,
"medium": 2
}
},
"anomalies": [
{
"id": "anomaly-001",
"timestamp": "2025-09-18T10:30:00Z",
"type": "statistical",
"severity": "high",
"confidence": 0.92,
"description": "Unusual spike in database connection errors",
"affected_logs": 15,
"baseline_value": 2.1,
"detected_value": 47.3,
"context": {
"time_window": "5m",
"related_events": ["deployment-start", "config-change"]
},
"suggested_actions": [
"Check database server health",
"Review recent configuration changes",
"Scale database connections"
]
}
],
"patterns": [
{
"id": "pattern-001",
"type": "temporal",
"description": "High error rate during deployment windows",
"frequency": "weekly",
"confidence": 0.87,
"examples": [
"2025-09-18T10:30:00Z: Deploy started, errors increased 300%",
"2025-09-11T10:30:00Z: Deploy started, errors increased 250%"
]
}
],
"insights": [
{
"type": "recommendation",
"title": "Implement circuit breaker pattern",
"description": "High database error rates suggest need for resilience patterns",
"priority": "high",
"estimated_impact": "Reduce error propagation by 60%"
}
]
}
Troubleshooting
Common issues and solutions when running log analysis and anomaly detection.
Common Issues
High Memory Usage
Log analyzer consuming excessive memory during processing
- Reduce batch size for log processing
- Increase number of workers for parallel processing
- Implement log sampling for high-volume sources
- Optimize Elasticsearch index settings
False Positive Anomalies
Too many false positive anomaly alerts
- Adjust anomaly detection sensitivity settings
- Extend baseline training period for models
- Add known patterns to whitelist
- Fine-tune confidence thresholds
Log Processing Lag
Delay between log generation and analysis
- Optimize log shipper configuration
- Increase Redis buffer size
- Scale Elasticsearch cluster horizontally
- Implement log preprocessing pipelines
Log Analysis Documentation Complete!
You now have comprehensive knowledge to implement AI LogAnalyzer in your observability stack. From basic log processing to advanced anomaly detection, you're equipped to gain intelligent insights from your log data with AI-powered analysis.
Ready to revolutionize your log analysis? Start your free trial today and discover how AI can transform your log data into actionable insights and proactive monitoring.