AI CloudOptimizer
Intelligent resource optimization and cost prediction
Intelligent Resource Optimization
AI continuously analyzes usage patterns and automatically optimizes resource allocation for maximum efficiency
Predictive Scaling
Machine learning predicts future resource needs and proactively scales infrastructure
Multi-Cloud Efficiency
Optimize resource allocation across AWS, Azure, GCP, and hybrid environments simultaneously
Cost Savings
Automated optimization delivers significant cost savings while maintaining performance
Installation
Deploy AI CloudOptimizer to start intelligent resource optimization and predictive scaling across your cloud infrastructure.
System Requirements
- Python 3.9 or higher
- Terraform 1.0+ (for infrastructure modifications)
- Kubernetes 1.20+ (for container optimization)
- Minimum 8GB RAM (16GB recommended for large environments)
- Network access to cloud provider APIs and monitoring systems
Install via Package Manager
# Install via pip
pip install augment-cloud-optimizer
# Install via Docker
docker pull augment/cloud-optimizer:latest
# Install from source
git clone https://github.com/augment-ai/cloud-optimizer
cd cloud-optimizer
pip install -e .
# Install cloud provider tools
pip install boto3 azure-mgmt google-cloud
# Verify installation
cloud-optimizer --version
Cloud Provider Authentication
Configure access to your cloud providers and monitoring systems:
# Set Augment API key
export AUGMENT_API_KEY=your_api_key_here
# Configure AWS credentials
export AWS_ACCESS_KEY_ID=your_aws_key
export AWS_SECRET_ACCESS_KEY=your_aws_secret
# Configure Azure credentials
az login
# Configure GCP credentials
gcloud auth application-default login
# Initialize cloud optimizer
cloud-optimizer init --providers aws,azure,gcp
# Verify cloud access
cloud-optimizer health-check --all-providers
Quick Start
Start optimizing your cloud resources and implementing predictive scaling in minutes.
1. Analyze Current Resources
# Discover and analyze current resources
cloud-optimizer analyze --providers aws,azure,gcp
cloud-optimizer analyze --regions us-east-1,us-west-2,eastus
# Generate baseline optimization report
cloud-optimizer baseline --timeframe 30d --include-costs
# Identify optimization opportunities
cloud-optimizer opportunities --min-savings 100 --risk-level low
2. Configure Optimization Policies
# Set optimization targets
cloud-optimizer policy --cost-reduction 30% --performance-maintain 95%
# Configure auto-scaling rules
cloud-optimizer autoscale --enable --prediction-window 7d
cloud-optimizer autoscale --metrics cpu,memory,network --thresholds auto
# Enable continuous optimization
cloud-optimizer continuous --enable --interval 1h --approve-low-risk
3. Start Optimization
# Start optimization daemon
cloud-optimizer optimize --daemon --continuous
# Execute specific optimizations
cloud-optimizer optimize --resources ec2,rds,kubernetes --dry-run
# Monitor optimization progress
cloud-optimizer status --live --include-savings
# Generate optimization report
cloud-optimizer report --format html --output optimization-report.html
Configuration
Configure AI CloudOptimizer to align with your performance requirements and optimization goals.
Basic Configuration
version: "1.0"
organization: "your-company"
environment: "production"
providers:
aws:
regions: ["us-east-1", "us-west-2", "eu-west-1"]
accounts: ["123456789012", "987654321098"]
azure:
regions: ["eastus", "westus2", "northeurope"]
subscriptions: ["sub-123", "sub-456"]
gcp:
regions: ["us-central1", "us-west1", "europe-west1"]
projects: ["project-123", "project-456"]
optimization_targets:
cost_reduction: 30
performance_threshold: 95
availability_requirement: 99.9
risk_tolerance: "medium"
resource_policies:
compute:
right_sizing: true
spot_instances: true
reserved_instances: true
auto_shutdown: true
storage:
lifecycle_management: true
compression: true
tiering: true
cleanup_unused: true
network:
bandwidth_optimization: true
cdn_usage: true
load_balancer_optimization: true
predictive_scaling:
enabled: true
prediction_window: "7d"
scaling_algorithms: ["linear", "seasonal", "ml"]
confidence_threshold: 0.8
metrics:
- "cpu_utilization"
- "memory_utilization"
- "network_throughput"
- "request_rate"
automation:
continuous_optimization: true
optimization_interval: "1h"
auto_approve_thresholds:
cost_impact: 1000
risk_level: "low"
notification_channels:
- "slack"
- "email"
rollback_on_issues: true
Resource Optimization
AI CloudOptimizer provides comprehensive resource optimization across all major cloud resource types.
Compute Optimization
- • Right-sizing EC2, VM, and GCE instances
- • Spot instance recommendations
- • Reserved capacity optimization
- • Auto-shutdown for idle resources
Storage Optimization
- • Storage tier optimization
- • Lifecycle policy automation
- • Unused volume cleanup
- • Compression and deduplication
Network Optimization
- • Bandwidth usage optimization
- • CDN configuration tuning
- • Load balancer efficiency
- • Data transfer cost reduction
Container Optimization
- • Kubernetes resource limits
- • Node pool optimization
- • Container image optimization
- • Workload placement
Environment Variables
Configure AI CloudOptimizer behavior using environment variables for different deployment scenarios.
Variable | Description | Default |
---|---|---|
AUGMENT_API_KEY | Your Augment API key | Required |
CLOUD_OPTIMIZER_CONFIG | Path to configuration file | .cloud-optimizer.yaml |
CLOUD_OPTIMIZER_DRY_RUN | Enable dry-run mode by default | false |
CLOUD_OPTIMIZER_WORKERS | Number of optimization worker processes | 4 |
Basic Usage
Learn the fundamental resource optimization patterns and cloud efficiency workflows.
Optimization Commands
# Analyze resource utilization across providers
cloud-optimizer analyze --all-providers --detailed
# Optimize compute resources
cloud-optimizer optimize --resource-type compute --right-size --spot-instances
# Optimize storage resources
cloud-optimizer optimize --resource-type storage --lifecycle --cleanup
# Optimize network resources
cloud-optimizer optimize --resource-type network --bandwidth --cdn
CLI Commands Reference
Complete reference for all resource optimization and cloud efficiency commands.
optimize
Execute intelligent resource optimization with AI-powered recommendations
cloud-optimizer optimize [options]
Options:
--resource-type <type> Resource type (compute|storage|network|database|all)
--provider <provider> Cloud provider (aws|azure|gcp|all)
--region <region> Target region for optimization
--cost-target <percent> Target cost reduction percentage
--performance <percent> Minimum performance threshold
--risk-level <level> Risk tolerance (low|medium|high)
--dry-run Preview optimizations without applying
--continuous Enable continuous optimization
--approve-threshold <amt> Auto-approve optimizations under threshold
--output <file> Output optimization report
predict
Generate predictive scaling recommendations
cloud-optimizer predict [options]
Options:
--timeframe <period> Prediction timeframe (1d|7d|30d|90d)
--metrics <metrics> Metrics to predict (cpu|memory|network|requests)
--confidence <level> Minimum prediction confidence
--scaling-events Include scaling event predictions
--cost-forecast Generate cost forecast
--seasonality Include seasonal patterns
--growth-trends Account for growth trends
Best Practices
Cloud optimization best practices to maximize efficiency while maintaining performance and reliability.
Optimization Strategy
- Start with low-risk optimizations to build confidence
- Establish performance baselines before optimization
- Use gradual optimization rollouts in production
- Monitor performance metrics continuously after changes
- Implement automated rollback for performance degradation
- Regular review and adjustment of optimization policies
Predictive Scaling
Advanced predictive scaling capabilities that anticipate resource needs and scale proactively.
Prediction Models
Linear Trends
Predict based on historical linear growth patterns
Seasonal Patterns
Account for daily, weekly, and monthly usage cycles
Machine Learning
Advanced ML models for complex usage patterns
Scaling Configuration
# Configure predictive scaling for auto-scaling groups
cloud-optimizer predict-scale --resource asg-web-servers \
--prediction-window 7d \
--confidence 0.8 \
--scale-ahead 30m
# Set up Kubernetes predictive scaling
cloud-optimizer predict-scale --resource k8s-deployment \
--namespace production \
--metrics cpu,memory \
--seasonal-patterns true
# Configure database predictive scaling
cloud-optimizer predict-scale --resource rds-cluster \
--metrics connections,cpu \
--scale-type read-replicas
Multi-Cloud Support
Comprehensive multi-cloud optimization capabilities for hybrid and distributed cloud architectures.
Cross-Cloud Optimization
# Compare costs across cloud providers
cloud-optimizer compare --providers aws,azure,gcp --resource-types compute,storage
# Optimize workload placement
cloud-optimizer placement --workload web-tier \
--optimize-for cost \
--constraints latency<100ms,availability>99.9%
# Multi-cloud resource migration recommendations
cloud-optimizer migrate --from aws --to azure \
--workload batch-processing \
--cost-threshold 20%
API Integration
Integrate AI CloudOptimizer into your cloud management and automation workflows.
REST API
# Trigger optimization analysis via API
curl -X POST https://api.augment.cfd/v1/optimization/analyze \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"providers": ["aws", "azure"],
"resource_types": ["compute", "storage"],
"optimization_targets": {
"cost_reduction": 30,
"performance_threshold": 95
}
}'
Python SDK
from augment_cloud_optimizer import CloudOptimizer
# Initialize cloud optimizer
optimizer = CloudOptimizer(api_key=os.environ['AUGMENT_API_KEY'])
# Analyze current resource usage
analysis = await optimizer.analyze_resources(
providers=['aws', 'azure', 'gcp'],
timeframe='30d',
include_costs=True
)
# Get optimization recommendations
recommendations = await optimizer.get_recommendations(
cost_target=30,
performance_threshold=95,
risk_level='medium'
)
print(f"Found {len(recommendations)} optimization opportunities")
# Execute optimizations
for rec in recommendations:
if rec.risk_level == 'low' and rec.estimated_savings > 1000:
result = await optimizer.execute_optimization(rec.id)
print(f"Applied optimization {rec.id}: {result.status}")
# Set up predictive scaling
scaling_config = await optimizer.configure_predictive_scaling(
resources=['asg-web', 'k8s-api'],
prediction_window='7d',
confidence_threshold=0.8
)
API Reference
Complete API documentation for integrating cloud optimization into your applications.
Optimization Analysis Endpoint
POST /v1/optimization/analyze
Analyze cloud resources and generate optimization recommendations.
Request Body:
{
"providers": ["aws", "azure", "gcp"],
"scope": {
"regions": ["us-east-1", "eastus", "us-central1"],
"accounts": ["account1", "account2"],
"resource_types": ["compute", "storage", "network"]
},
"optimization_targets": {
"cost_reduction": 30,
"performance_threshold": 95,
"availability_requirement": 99.9
},
"analysis_options": {
"timeframe": "30d",
"include_predictions": true,
"risk_tolerance": "medium",
"include_multi_cloud": true
}
}
Response:
{
"analysis_id": "opt-analysis-123",
"status": "completed",
"summary": {
"total_resources": 1247,
"optimization_opportunities": 156,
"potential_monthly_savings": 18450.67,
"current_efficiency_score": 72
},
"recommendations": [
{
"id": "rec-001",
"type": "right_sizing",
"resource_type": "compute",
"provider": "aws",
"resource_id": "i-1234567890abcdef0",
"current_config": {
"instance_type": "m5.xlarge",
"vcpu": 4,
"memory": "16 GiB",
"monthly_cost": 146.0
},
"recommended_config": {
"instance_type": "m5.large",
"vcpu": 2,
"memory": "8 GiB",
"monthly_cost": 73.0
},
"estimated_savings": 73.0,
"confidence": 0.89,
"risk_level": "low",
"performance_impact": "minimal",
"implementation_steps": [
"Stop instance during maintenance window",
"Change instance type to m5.large",
"Start instance and verify performance"
]
}
],
"predictive_insights": {
"scaling_predictions": [
{
"resource": "asg-web-servers",
"prediction_window": "7d",
"predicted_peak": "2025-09-25T14:00:00Z",
"recommended_capacity": 8,
"confidence": 0.92
}
],
"cost_forecast": {
"next_month": 42300.45,
"optimized_next_month": 29610.32,
"savings_potential": 12690.13
}
}
}
Troubleshooting
Common issues and solutions when running cloud optimization and resource management.
Common Issues
Optimization Rollbacks
Optimizations causing performance issues requiring rollback
- Use more conservative optimization thresholds
- Implement gradual rollout with monitoring
- Extend baseline analysis period
- Test optimizations in staging environments first
Predictive Scaling Accuracy
Predictive scaling making inaccurate resource predictions
- Increase historical data collection period
- Account for business events and seasonality
- Adjust confidence thresholds for predictions
- Use multiple prediction models for consensus
Multi-Cloud Complexity
Difficulties managing optimization across multiple cloud providers
- Start optimization with single provider first
- Use provider-specific optimization policies
- Implement centralized monitoring and alerting
- Standardize resource tagging across providers
Cloud Optimization Documentation Complete!
You now have comprehensive knowledge to implement AI CloudOptimizer in your cloud infrastructure. From intelligent resource optimization to predictive scaling, you're equipped to maximize efficiency and reduce costs with AI-powered cloud management.
Ready to optimize your cloud resources? Start your free optimization assessment today and discover how AI can reduce costs while improving performance across your multi-cloud infrastructure.